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Abstract

High Definition (HD) maps provide highly accurate details of the surrounding
environment that aids in the precise localization of autonomous vehicles. To
provide the most recent information, these HD maps must remain up-to-date with
the changes present in the real world. Scene Change Detection (SCD) is a critical
perception task that helps keep these maps updated by identifying the changes
of the scene captured at different time instances. Deep Neural Network (DNNs)
based SCD methods hinge on the availability of large-scale labeled images that are
expensive to obtain. Therefore, current SCD methods depend heavily on transfer
learning from large ImageNet datasets. However, they induce domain shift which
results in a drop in change detection performance. To address these challenges, we
propose a novel self-supervised pretraining method for the SCD called D-SSCD
that learns temporal-consistent representations between the pair of images. The
D-SSCD uses absolute feature differencing to learn distinctive representations
belonging to the changed region directly from unlabeled pairs of images. Our
experimental results on the VL-CMU-CD and Panoramic change detection datasets
demonstrate the effectiveness of the proposed method. Compared to the widely
used ImageNet pretraining strategy that uses more than a million additional labeled
images, D-SSCD can match or surpass it without using any additional data. Our
results also demonstrate the robustness of D-SSCD to natural corruptions, out-of-
distribution generalization, and its superior performance in limited label scenarios.

1 Introduction

Most autonomous driving systems require HD maps to help the vehicle localize itself more accurately
in the surrounding environment. However, the physical environment is constantly susceptible to
semi-static changes as features such as traffic signs, construction sites, and lane markings are
constantly added or removed across time. HD maps, therefore, have to be continuously updated with
these changes to provide the vehicle with reliable information to ensure safe and robust navigation.
However, conventional HD map generation methods using specialized vehicles cannot reliably keep
the maps up-to-date because of the low traversal frequencies. Scene change detection (SCD) is a
critical perception task that helps alleviate the problem of efficient HD map maintenance and map
update by identifying these semi-static changes from images of the scene captured at different times.
It also plays a crucial role in other real-world applications such as ecosystem monitoring, urban
expansion, and damage assessment.

SCD is a low-likelihood problem where the changed region is smaller than the unchanged region with
uncertainty in change location and direction (11). Moreover, the changes that need to be detected
depend on the nature of the application and are classified into semantic changes and noisy changes (3).

1The official code is available at: https://github.com/NeurAI-Lab/D-SSCD
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The structural changes caused by the appearance or disappearance of objects present in a scene are
considered as semantic changes, while the changes induced by the radiometric (illumination, shadows,
seasonal changes) and geometric variations (viewpoint differences caused by camera rotation) are
considered as noisy changes (3) (6) (1). A critical challenge in SCD is that these noisy changes are
entangled with the semantic changes that alter the appearance of an image, thus degrading the change
detection performance (1).
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Figure 1: Performance of supervised and the proposed self-
supervised pretraining (D-SSCD) evaluated using DR-TANet
(2) on VL-CMU-CD dataset under limited label scenario.

Previous studies based on Deep Neural
Networks (DNNs) have proposed to ex-
tract multi-level feature representations
from the input images to improve the per-
formance of SCD against noisy changes
(1; 3; 9; 10). However, the success of
these state-of-the-art methods (10; 2) of-
ten hinges on a large quantity of anno-
tated data. Large-scale collection and
annotation of SCD datasets are difficult
to obtain as they are labor-intensive and
time-consuming. For instance, on av-
erage, it takes around 20 minutes and
156 minutes to annotate a single pair of
images in the panoramic change detec-
tion (PCD) (4) and panoramic semantic
change detection (PSCD) (8) dataset, re-
spectively. Therefore, the availability of
large-scale labeled datasets for SCD is still scarce, and deficient (11). To address the dependency
on labeled data, various SCD approaches initially pretrain their models on the large-scale ImageNet
(27) in a supervised manner and later finetune with large amounts of pixel-level annotations on
domain-specific dataset (1), (2). However, there still exists the problem of domain shift as the
distribution of the ImageNet data widely differs from that of SCD datasets. This domain shift leads
to the degradation of change detection performance in SCD methods.

To attenuate the reliance of SCD models on a large amount of dense pixel-level annotations and the
additional large-scale labeled ImageNet data, we hypothesize a novel self-supervised pretraining
methods that utilizes unlabeled data to learn representations useful for SCD. With extensive exper-
iments, we show that our proposed self-supervised pretraining methods demonstrate remarkable
performance compared to ImageNet pretraining under limited labels scenario as seen in Figure 1. To
the best of our knowledge, this is the first work on SCD that relaxes the requirement of large-scale
annotated datasets and the need to pretrain on additional large-scale labeled data. Our contribution
can be summarized as follows:

1. We propose a novel self-supervised pretraining method called D-SSCD that learns temporal-
consistent representations relevant for scene change detection.

2. We evaluated the proposed methods on two challenging SCD datasets. Our proposed method
surpasses the widely used ImageNet pretraining without any additional data.

3. Current scene change detection models are vulnerable to severe performance impairments on
images with natural corruptions, and the proposed self-supervised pretraining significantly
enhances the robustness of the model to natural corruptions.

4. The effectiveness of the proposed self-supervised pretraining under limited labels and
generalization to out-of-distribution data is verified.

2 Related Work

Self-supervised Representation Learning. Contrastive learning has recently gained popularity
because of their ability to learn useful representations from the unlabeled data (14; 17; 15; 19).
InstDisc (18) proposed instance discrimination as a pretext task to learn a good feature representation
by capturing the apparent similarity among instances. MoCo (19) proposed an idea of instance
discrimination by utilizing momentum contrast and uses a queue-based dictionary for efficient
sampling of negative samples. However, the model was able to discriminate the positive samples
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with ease because of their weaker choice of data augmentations. SimCLR (14) overcomes this by
exploring various augmentations in an end-to-end training network and uses a bigger batch size to
collect negative samples instead of separate memory banks or dictionary queues. However, this
approach is limited by large GPU memory size as the availability of negative samples is coupled with
a bigger batch size. Moreover, this method suffers from trivial constant solutions wherein both the
encoders learn similar representations from the input images. BYOL (20), SimSiam (21) avoid the
problem of trivial solution and requirement of large negative samples by introducing asymmetric
network architecture using ’predictor’ network and asymmetric parameter updates using momentum
encoder and stop-gradient. Unlike BYOL and SimSiam, where asymmetric network or parameter
updates are required to avoid trivial solutions, Barlow Twins (13) uses an intuitive objective function
that uses a cross-correlation matrix to maximize the correlation between the distorted views of
samples while minimizing the redundancy between the components of these vectors. Owing to its
advantages, we utilize the Barlow twins loss function to realize the goal.

Scene Change Detection (SCD). Recently, Deep Convolutional Neural Networks (CNNs) have
demonstrated remarkable performance in SCD tasks when compared to the traditional change
detection methods (1; 3; 9; 10; 8). Alcantarilla et al. (3) proposed a change detection method called
CDNet that utilizes CNN to extract dense geometry and accurate registration to warp images from
different times for the change detection. Guo et al. (1) proposed to learn the discriminative features
with the customized feature distance metrics. Moreover, they proposed a threshold contrastive loss
function to tackle significant viewpoint differences present in the input image pairs. Sakurada et al.
(7), and (12) utilized dense optical flow and CNNs to model the spatial correspondences between
images to minimize the noise due to significant viewpoint differences. Furthermore, Sakurada et
al. (8) also proposed a method to capture the multi-scale feature information using hierarchically
dense connections for semantic change detection. DR-TANet (2) proposes a lightweight network
that utilizes a temporal self-attention mechanism to enhance the feature correlation between the two
temporal images.

Despite the advances in SCD, all these methods hinge heavily on the availability of large-scale
manually annotated datasets that are hard to obtain. When the labeled data is limited, they depend
on transfer learning from models pretrained in a supervised manner on some other big datasets such
as ImageNet (27). Yet, transfer learning from the ImageNet pretraining models induces domain
shift and reduces the flexibility to use encoder architecture different from the one it is pretrained on.
This work proposes self-supervised pretraining methods that utilize in-distribution unlabeled data to
learn representations relevant to SCD. Moreover, our proposed approach is simple and can be easily
adopted to any change detection methods.

3 Methodology

Inspired by the recent improvements in self-supervised representation learning, we propose novel
pretraining method for the SCD task that exploits temporal consistency between the two images.
At first, we employ self-supervised pretraining method based on Barlow twins (13) called SSCD
to over come the dependency of SCD methods to large labeled data. We further propose a novel
feature differencing based pretraining approach to learn better representations for the changed regions
directly. These pretraining methods are described in detail in Sections 3.1 and 3.2, and the SCD
algorithm used to evaluate the proposed pretraining methods is briefly presented in Section 3.3.

3.1 Self-supervised pretraining for Scene Change Detection (SSCD)

SCD aims to identify the changed region between the image pairs captured at different times. To
achieve this, the alignment between the radiometric space of the image pairs and the low-level features
of the change detection network is required. This alignment is challenging as the changed regions
are easily affected by noisy changes caused due to seasonal variations and perspective differences.
To facilitate the alignment of low-level features between two images, we employ a self-supervised
pretraining method that utilizes Barlow twins (13) objective function that implicitly minimize the
differences between the image pairs in the feature space by maximizing the cross-correlation of
unchanged regions. The reason for choosing this objective function is due to its competitive perfor-
mance against contrastive methods (14; 19) and its ability to learn robust representations without the
requirement for large number of negative samples.
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Figure 2: Schematics of proposed self-supervised pretraining methods for scene change detection. Top: SSCD
learns representation of the unchanged regions by maximizing cross-correlation between two images in the
feature space. Bottom: D-SSCD uses absolute feature differencing to learn the representation of the changed
region directly. Both models are trained in a self-supervised manner using Barlow twins objective function (13).

Although the image pair captured at a different instances of time (T0 & T1) are semantically different
from each other, they both represent the same scene at two different times. Therefore, we consider
T0 as an augmented version of T1 image and vice versa. These input pairs are fed into the Siamese
encoder (fθ) with shared parameters θ producing feature vectors f ′0 and f ′1. Then, a non-linear
projection (gθ) is applied over the encoded feature vectors to get representations z′0 and z′1 (Figure 2,
Top plot). The model is trained in a self-supervised manner using the objective function (13) as
follow,
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where λ is a trade-off constant, C is the cross-correlation matrix calculated between the representations
of the input image pairs (z′0 and z′1) along the batch samples b and i, j index the vector dimension of
the network outputs. This objective function consists of two components: (1) the invariance term
that makes the representations of the input image pair (T0, T1) invariant to the presence of noisy
changes (e.g., seasonal variations) by maximizing the diagonal components of the cross-correlation
matrix close to identity matrix. (2) the redundancy reduction term tries to decorrelate the off-diagonal
components of the cross-correlation matrix and thus, aligning the representations of the input image
pairs to be similar. Therefore, the SSCD model learns temporal-consistent representations that are
useful for the downstream task of scene change detection.
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3.2 Differencing based Self-supervised pretraining for Scene Change Detection (D-SSCD)

Intuitively, maximizing the correlation between two images may affect the discrimination ability
of the model in the downstream SCD task, because the representations of the two images along
with that of the changed regions is forced to be closer together. Therefore, in contrast to SSCD,
where we maximize the correlation between the image pair (T0, T1), we propose a differencing based
self-supervised pretraining called D-SSCD that maximizes the correlation of the changed regions to
learn distinctive representations that are vital for SCD.

D-SSCD gets an image pairs (T0, T1) from different time instances as inputs. Random transformations
such as color distortions and Gaussian blur are applied to this input image pair to obtain two pairs
of augmented images (T0 → T ′0, T ′′0 ; T1 → T ′1, T ′′1 ). These augmented pairs are passed into the
Siamese encoder (fθ) and projection head (gθ) to output the corresponding feature representations.
The model parameters (θ) are shared. To learn the representation of the changed features between the
pair of images, absolute feature differencing is applied over the projection outputs;

d1 = |g(f(T′0))− g(f(T′1))|
d2 = |g(f(T′′0))− g(f(T′′1))|

(3)

Then, Barlow twins objective function (Eq 1) is applied on the difference representations d1 and
d2 to maximize the cross-correlation of the changed features. In this way, the model will pursue to
learn the non-redundant information about the relevant changes that occur between the image pairs.
After the pretraining step, the parameters of the encoder fθ are transferred to the downstream task of
change detection.

3.3 SCD Method

We evaluate the performance of self-supervised pretrained model by finetuning it using exsisting SCD
method. DR-TANet (2) is selected because of its ability to achieve state-of-the-art results on SCD
datasets. It employs an encoder-decoder architecture that incorporates a temporal attention module to
exploit the similarity and dependency of feature maps at two temporal channels. Additional details
and parameter settings used for finetuning were mentioned in the Section A.3 in Appendix.

4 Experiments

4.1 SCD Datasets

To train and validate the proposed framework, we considered two SCD datasets subjected to noisy
changes such as illumination, shadows, seasonal variations, and camera viewpoint differences.

VL-CMU-CD dataset (3): It consists of 152 perspective image sequences taken at different time
instances. Each image sequence contains approximately nine pairs of softly co-registered images
taken at different times. Therefore, 1362 RGB image pairs of 1024× 768 are generated with their
manually labeled pixel-level change masks. This dataset portrays the typical macroscopic changes
that occur in an urban scenario. The changes in this dataset are not detailed clearly as the images are
predominantly affected by noisy changes.

Panoramic Change Detection (PCD) dataset (4): It contains two subsets of data, namely
’TSUNAMI’ and ’GSV’. Each subset has 100 pairs of non-registered panoramic images (224× 1024
pixels) along with the manually labeled change masks. TSUNAMI subset contains image pairs
representing the aftermath of tsunami-affected areas in Japan, whereas the GSV subset contains
image pairs belonging to Google street view. Compared to VL-CMU-CD dataset, the image pairs in
this dataset are less affected by noisy changes and contain large view-point differences.

In both the datasets, the structural changes such as the emergence/vanishing of buildings and cars are
considered relevant, and the noisy changes are deemed irrelevant and excluded from the ground truth
change map.
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Table 1: Performance (F1-score) of DR-TANet model trained on VL-CMU-CD and PCD datasets using different
pretraining methods.

Methods VL-CMU-CD PCD Dataset

Tsunami GSV Average

Rand Init 0.708±0.051 0.634±0.031 0.407±0.021 0.535±0.024

Sup-Im 0.752±0.015 0.687±0.013 0.465±0.012 0.576±0.012

SSCD 0.745±0.012 0.709±0.018 0.456±0.022 0.583±0.021

D-SSCD 0.725±0.014 0.712±0.014 0.558±0.019 0.642±0.017

4.2 Evaluation Criteria

We use the F1-score metric to evaluate the change detection performance after finetuning. The value
of the F1-score ranges from 0 to 1. The higher the F1-score, the better the precision and recall.

F1− score = 2 ·Recall · Precision
Recall + Precision

(4)

5 Results and Discussion

Experiments are conducted by finetuning the state-of-the-art SCD model with three sets of pretraining
strategies on PCD and VL-CMU-CD datasets. (1) Random initialized (Rand Init), (2) Supervised
ImageNet pretraining (Sup-Im), (3) Randomly initialized self-supervised pretraining (SSCD, &
D-SSCD). In addition, we provide the results on using Supervised ImageNet initialization for self-
supervised pretraining (Sup-Im + SSCD, & Sup-Im + D-SSCD) step in Appendix Section A.1.1).

5.1 Evaluation on VL-CMU-CD and PCD Datasets

Table 1 shows the performance of proposed pretraining methods evaluated using DR-TANet on the
VL-CMU-CD and PCD dataset. The results show that our proposed pretraining method (SSCD)
can match the widely-used ImageNet pretraining (Sup-Im) that utilizes millions of images without
the use of any additional data. In comparison with the SSCD, the performance of the D-SSCD
pretraining drops by 2% on VL-CMU-CD. Since the D-SSCD method learns the representation
of changed regions directly which leads to the performance decrease as these changed regions are
not well distinguished in the VL-CMU-CD dataset. This shows that pretraining by SSCD helps to
learn temporal-consistent representations when the image pairs are predominantly subjected to noisy
changes in illuminations and seasonal variations.

We also evaluate the performance of our proposed methods on the PCD dataset using DR-TANet
(Table 1). Similar to the results observed on the VL-CMU-CD dataset, the proposed pretraining
outperforms the supervised ImageNet pretraining comfortably by a large margin. In the PCD dataset,
D-SSCD exceeds SSCD pretraining by 6%. Thus, learning the representation of the change region
using differencing is likely to improve the change detection performance when the changes between
the image pairs are subjected to large view-point differences and less affected by the noisy changes
caused by illumination, seasonal variations, and view-point differences.

Overall, the evaluation on VL-CMU-CD and PCD datasets shows that our proposed methods on
unlabeled data can match or surpass the widely used ImageNet pretraining that uses more than a
million labeled images. Moreover, it also alleviates the problem of domain shift caused by transfer
learning the ImageNet weights pretrained on datasets vastly different from that of SCD datasets.

5.2 Generalization on Out-of-distribution Data

In practice, the SCD model has to perform in challenging scenarios where the testing distribution is
unknown and drastically different from the one it is trained on. Therefore, it is necessary that the
learned representations generalize well across out-of-distribution data. The PCD dataset is considered
OOD data for a model pretrained and finetuned on the VL-CMU-CD dataset and vice-versa. Table
2 shows the F1-score of different pretraining methods on DR-TANet model to out-of-distribution
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Table 2: Out-of-distribution performance evaluation (F1-score) of DR-TANet model using pretraining methods.

Methods VL-CMU-CD→PCD PCD→VL-CMU-CD

Rand Init 0.234±0.052 0.186±0.032

Sup-Im 0.286±0.021 0.228±0.012

SSCD 0.366±0.017 0.306±0.015

D-SSCD 0.417±0.016 0.250±0.020

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Transform Pixelate JPEG Compression

Figure 3: VL-CMU-CD test set is exposed to 15 types of artificially generated natural corruptions (16) with five
levels of corruption severity. This figure shows a randomly selected image from the VL-CMU-CD test set with
severity 3—best viewed on color.

data. Results show that the model initialized with proposed self-supervised pretraining (SSCD and
D-SSCD) generalizes well to the OOD dataset compared to the model initialized with random weights
and ImageNet pretrained weights, indicating that self-supervised pretraining learns better and more
generalizable feature representations. Results show that the proposed pretraining helps the SCD
model to generalize well across datasets with different distributions.

5.3 Robustness under Natural Corruption

0 1 2 3 4 5
Corruption Severity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e 

Pe
rfo

rm
an

ce
 u

nd
er

 C
or

ru
pt

io
n

 (r
PC

)

Sup-Im
SSCD
D-SSCD
Rand Init

Figure 4: Relative Performance degradation on corrupted images
with increasing levels of corruption severity, best viewed on color.

The task of SCD is often applied to
the outdoor environment, where the
images are subjected to seasonal varia-
tions. Therefore, the SCD model must
be robust to the common natural cor-
ruptions such as illumination, noise
and blur. Here, we evaluate the robust-
ness of SCD models to natural corrup-
tions which has not been addressed
in this domain previously. Following
Hendrycks et al. (16), we use 15 dif-
ferent natural corruptions applied on
VL-CMU-CD test set to generate VL-
CMU-CD-C (examples are shown in
Figure 3). These corruptions are cat-
egorized in 4 categories as noise, blur,
weather, and digital. Each corruption category is subjected to five severity levels obtained by varying
intensities of corruption. The DR-TANet model initialized with different pretraining methods is
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Table 3: Performance (F1-score) of pretraining methods evaluated using DR-TANet on VL-CMU-CD dataset
under varying label availability.

Methods Label Fraction

1% 10% 50% 100%

Rand Init 0.252±0.05 0.423±0.032 0.545±0.072 0.708±0.051

Sup-Im 0.295±0.02 0.411±0.018 0.601±0.018 0.752±0.015

SSCD 0.569±0.014 0.617±0.016 0.685±0.015 0.745±0.012

D-SSCD 0.564±0.03 0.611±0.025 0.674±0.014 0.725±0.014

trained using clean VL-CMU-CD while being tested on VL-VMU-CD-C. The metrics mean per-
formance under corruption (mPC) (26) and relative performance under corruption (rPC) (26) are
used to evaluate the robustness of models (Eqs (5) and (6), respectively). rPC measures the relative
degradation of performance on corrupted data with respect to clean data.

mPC =
1

NcNs

Nc∑
c=1

Ns∑
s=1

Pc,s (5)

where Pc,s is the F1-score measure evaluated on VL-CMU-CD-C under cth corruption with severity
level s. while Nc= 15 and Ns= 5 indicate the number of corruptions and severity levels, respectively.

rPC =
mPC

Pclean
(6)

Figure 4 shows that the drop in performance increases with an increase in the severity of the applied
corruption. Moreover, (1) there is a large degradation in performance on the model initialized with
supervised Imagenet pretraining (Sup-Im) when subjected to the corrupted test set. (2) Unlike the
ImageNet pretrained models that suffer severe performance loss on corrupted images, the proposed
pretraining methods (SSCD and D-SSCD) are more robust to increase in corruption severity as the
degradation in performance is gradual. (3) D-SSCD is slightly more robust than SSCD as it likely
learns robust representations from an extra pair of augmented images during model pretraining.
Therefore, it is evident that the proposed self-supervised pretraining brings discernible benefits in
terms of robustness to natural corruptions when compared to the ImageNet pretraining.

5.4 Efficiency under Limited Labels

The availability of large annotated data remains a critical challenge in SCD due to the high cost of
acquiring manual annotations. Therefore, the SCD model needs to demonstrate steady performance
when the availability of labeled data is limited. Table 3 shows the performance of different pretraining
under limited labels setting. Different percentages of labeled data (1%, 10%, 50%, and 100%)
are sampled in a class-balanced manner from the training split of VL-CMU-CD. The finetuning
performance of proposed pretraining methods with varying quantities of labeled data are evaluated
using the VL-CMU-CD test set. Our proposed pretraining methods (SSCD and D-SSCD) outperform
the widely used Imagenet pretraining by a large margin across all limited label scenarios. The
performance drop of Sup-Im is more significant when the amount of labeled data is 10% or less
compared to our proposed methods, and then the gap decreases as the availability of labeled data
increases. Thus, the proposed pretraining methods increase the performance of the change detection
model to a greater extent when the availability of the labeled data is scarce.

Overall, compared to SSCD the proposed D-SSCD method increases the robustness and generalization
of the SCD model to a larger extent in many real-world scenarios where the images are affected by
challenging conditions. This can be attributed to the learned representations of the changed features
through differencing which helps D-SSCD to learn more generalizable task agnostic features that
further contributes to the increase in robustness of the SCD model.
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6 Conclusion and Future work

We proposed a novel self-supervised pretraining method (D-SSCD), specifically for SCD, that learn
temporal-consistent features inherent to the data in an unsupervised manner. We demonstrated
that our method can be easily extended to existing state-of-the art SCD methods. With extensive
experiments on two challenging SCD datasets, we demonstrated the superiority of the D-SSCD over
the widely used ImageNet pretraining without any additional data. Our results also demonstrate the
robustness of D-SSCD to natural corruptions, out-of-distribution generalization and its efficiency
under limited annotations. Therefore, we believe that our findings in this work can be harnessed
to increase the performance and robustness of SCD where obtaining the labeled data is scarce and
expensive. Although our approach reduces the dependency of the SCD models to large-scale labeled
data, one possible limitation is that the task of SCD is not entirely unsupervised. In the future, we
intend to extend the proposed self-supervised approach to tackle the problem of unsupervised change
detection.

7 Broader Impact

The findings outlined in this work can potentially be exploited to enhance the performance and
robustness in any application of change detection where the labeled data is scarce and expensive
to obtain. Some real-world applications such as ecosystem monitoring, urban expansion, damage
assessment, and autonomous HD map maintenance have an immensely positive impact on society.
For instance, in the application of urban expansion and disaster assessment, it is important to identify
the damages caused due to natural disasters such as tsunami. Owing to the difficulty in obtaining
labeled data, our model can help in estimating the damages and help the government in making
crucial decisions. Additionally, our model can also be used in medical applications to estimate disease
severity by detecting the changes from medical images. This can potentially help clinicians to make
timely decisions, thus saving a patient’s life. Furthermore, we do not foresee any negative implications
of our model on society. Finally, we would also like to point out that the scene change task in computer
vision is less explored compared to other tasks such as object detection and semantic segmentation.
We believe that this research can kindle further developments in the direction of unsupervised scene
change detection for the above-mentioned applications which are clearly beneficial to society.
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A Appendix

A.1 Additional Experiments

A.1.1 Combination of Supervised and Self-supervised pretraining

In many computer vision tasks, studies have shown that self-supervised pretraining benefits from
prolonged training on large amounts of unlabeled datasets (14) (19). However, the task of SCD
demands registered/aligned pairs of temporal images to identify the changes in a scene. Because
of this, it is also hard to obtain these registered pair of unlabeled images as it is expensive and
time-consuming. We seek to address this issue by conducting additional experiments with a two-stage
pretraining approach, where we initialize our proposed self-supervised pretraining models with the
supervised ImageNet weights (Sup-Im + SSCD & Sup-Im + D-SSCD) instead of random initialization
and train it with a fewer amount of unlabeled data.

Similar to the experiments shown in Table 1 in the main paper, Table 5 shows the performance of
two-stage pretraining methods evaluated using DR-TANet on the VL-CMU-CD and PCD datasets.
We discern that the proposed pretraining in conjunction with the ImageNet pretraining (Sup-Im +
SSCD) surpasses the Sup-Im and SSCD by 1.3% and 2% on VL-CMUCD, respectively. Similarly,
Sup-Im +D-SSCD pretraining outperforms Sup-Im and D-SSCD by 8.6% and 2% on the PCD dataset,
respectively. Besides improving the performance of self-supervised pretraining, the combined
pretraining also reduces the requirement of registered pair of unlabeled images in SCD. Finally,
we highlight that pretraining in this way minimizes the problem of domain shift caused by transfer
learning from the ImageNet weights directly.

Evaluation under Natural corruption. In Figure 5, we show results similar to the performance of
different pretraining methods on corrupted images with increasing levels of corruption severity but
with an additional set of experiments using the two-stage pretraining approach. The combination of
supervised and self-supervised pretraining (Sup-Im + SSCD & Sup-Im + D-SSCD) is more robust
than the Sup-Im. However, when compared with the SSCD and D-SSCD pretrained models, the
robustness of the model is slightly affected as the representations learned during self-supervised
pretraining are highly influenced by the representations learned by the supervised ImageNet pretrained
weights (trained on million images).

Generalization to out-of-distribution data. We also evaluate the generalization ability of the
combined pretraining to out-of-distribution data (See Table 4) with similar experimental settings
discussed in Section 5.2. Similar to the results obtained when evaluating the combined pretraining
on natural corruptions, SSCD and DSSCD pretraining outperform the SSCD+Im and DSSCD+Im,
indicating that supervised pretraining affects the generalization ability of the representations learned
during the self-supervised phase when combined.

Table 4: Performance of pretraining methods evaluated using DR-TANet (2) on out-of-distribution dataset

Methods VL-CMU-CD→PCD PCD→VL-CMU-CD

Sup-Im 0.286±0.021 0.228±0.012

SSCD 0.366±0.017 0.306±0.015

D-SSCD 0.417±0.016 0.250±0.020

Sup-Im + SSCD 0.308±0.018 0.265±0.026

Sup-Im + D-SSCD 0.328±0.011 0.232±0.018

Evaluation under varying label quantities. Table 3 shows the performance of the combined
pretraining under varying label quantities. The experimental set-up is the same as discussed in
Section 5.4. In comparison to the Sup-Im, SSCD, and D-SSCD, combined pretraining (Sup-Im +
SSCD & Sup-Im + D-SSCD) demonstrates superior performance when finetuned on 100% labeled
data. However, when compared to the SSCD and D-SSCD pretraining, there is a slight decrease in
performance when the quantities of labeled data are limited.

Finally, we can conclude that although the combination of supervised and self-supervised pretraining
shows performance improvement over self-supervised pretraining (under normal settings), the robust-
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Table 5: Performance (F1-score) of DR-TANet model trained on VL-CMU-CD and PCD datasets using different
pretraining methods.

Methods VL-CMU-CD PCD Dataset

Tsunami GSV Average

Sup-Im 0.752±0.015 0.687±0.013 0.465±0.012 0.576±0.012

SSCD 0.745±0.012 0.709±0.018 0.456±0.022 0.583±0.021

D-SSCD 0.725±0.014 0.712±0.014 0.558±0.019 0.642±0.017

Sup-Im + SSCD 0.765±0.017 0.716±0.021 0.466±0.019 0.591±0.020

Sup-Im + D-SSCD 0.748±0.012 0.727±0.018 0.605±0.016 0.662±0.017

Table 6: Performance (F1-score) of pretraining methods evaluated using DR-TANet on VL-CMU-CD dataset
under varying label availability.

Methods Label Fraction

1% 10% 50% 100%

Sup-Im 0.295±0.02 0.411±0.018 0.601±0.018 0.752±0.015

SSCD 0.569±0.014 0.617±0.016 0.685±0.015 0.745±0.012

D-SSCD 0.564±0.03 0.611±0.025 0.674±0.014 0.725±0.014

Sup-Im + SSCD 0.552±0.024 0.598±0.019 0.661±0.021 0.765±0.015

Sup-Im + D-SSCD 0.556±0.02 0.604±0.011 0.664±0.017 0.748±0.015

ness and generalization of the model are slightly reduced under natural corruptions, out-of-distribution
data, and limited labeled scenarios.

A.2 Self-supervised pre-training setup
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Figure 5: Relative Performance degradation on corrupted im-
ages with increasing levels of corruption severity—best viewed
on color.

Dataset pre-processing. For PCD
dataset, original images are cropped into
224×224. By sliding 56 pixels in width
and data augmentation of plane rotation,
each image pair is expanded into 60
patches with a 224×224 resolution. In
total, 12000 image pairs are generated.
As the input, the image pairs will be re-
sized into 256×256. For VL-CMU-CD
dataset, we follow the random training
and testing splits in (1; 2). Nine hundred
thirty-three image pairs (98 sequences)
for training and 429 (54 sequences) for
testing are resized into a 256×256 resolu-
tion. Note that only images belonging to
the train set (without labels) are used to
train the model.

Architecture. We use Barlow Twins (13) as our baseline model. It consists of ResNet50 (28)
(without the final classification layer) as a feature extractor followed by a projector network. The
projector network has two linear layers, each with a hidden layer size of 512 output units. Owing to
the high computational requirements, the output of the projector network was modified to generate
embeddings of size 256 compared to the Barlow twins network, which generates embeddings of size
8192. The first layer of the projector is followed by a batch normalization layer and rectified linear
units. The architecture for the proposed SSCD and D-SSCD method remains the same except for a
differencing layer after the projection network in D-SSCD.
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Data Augmentation. Our image augmentation pipeline consists of the following transformations:
Image resizing to 256 × 256, color jittering, converting to grayscale, Gaussian blurring. Except
resizing, the other transformations are applied randomly, with some probability. Random crop
is not considered when pre-processing the change detection datasets as the presence of changed
regions between an image pair taken at different times is much smaller and random compared to the
unchanged regions.

Training and Optimization. We follow the optimization protocol described in Barlow Twins. We
use the LARS optimizer (23) and train for 400 epochs with a batch size of 16 on two NVIDIA
RTX-2080 Ti GPU. We use a learning rate of 0.003, multiply the learning rate by the batch size, and
divide it by 256. The learning rate is reduced by a factor of 1000 using a cosine decay schedule (22).
We use a weight decay parameter of 1x10−6. The architecture, augmentation, hyper-parameters, and
training procedures mentioned above remain the same for both proposed pretraining methods(SSCD
and D-SSCD).

A.3 Change Detection setup

We evaluate the proposed self-supervised pretraining methods by finetuning them to a downstream
task of SCD. DR-TANet (2), a state-of-the art SCD network is considered for finetuning. To keep the
consistency throughout the experiments, we used ResNet50 (28) as a feature extractor for finetuning
the pre-trained model on both of these networks. During finetuning, the data pre-processing, training,
and testing protocols followed by DR-TANet were replicated. We considered a batch size of 8 while
training the DR-TANet on VL-CMU-CD and PCD datasets. While training on PCD, we reduced the
dependency-scope size of the DR-TANet to 1x1 and trained the model in lowest setting owing to
limited GPU memory and longer training time.
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